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For a finite dimensional subspace M of C(X), X a compact metric space, it is
well known that the (set valued) metric projection PM is (Hausdorff) continuous at
any /E C(X) having a unique best approximation from M and is point Lipschitz
continuous at any /E C(X) having a strongly unique best approximation from M.
The converses of these classical results are studied. It is shown that if / has a
unique best approximation and P" is point Lipschitzian at f, then / has a strongly
unique best approximation. If M is an almost Chebyshev subspace of C(X), then
the converses of both statements above are shown to hold. Using a theorem of
Garkavi, the validity of these converses actually characterizes the almost
Chebyshev subspaces of C(X).

1. INTRODUCTION

Let C(X) denote the space of continuous, real-valued functions on the
compact metric space X endowed with the uniform norm, and let M be a
finite dimensional subspace of C(X). For IE C(X), PM(f) shall denote the
set of best uniform approximations to I from M. This paper investigates the
relationship between strong uniqueness (resp. uniqueness) of best approx
imations from M and point Lipschitz continuity (resp. continuity) of the
metric projection PM: C(X) ---+ 2M.

We say that m* EM is a unique best approximation to IE C(X) from M
if PM(f) = {m*} or, equivalently,

III-mil> 11/-m*11
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for all mE M\{m*}. We say that m* is a strongly unique best approx
imation to f if there is a constant y = y(f) >0 such that

Ilf- mil? Ilf- m*11 + y 11m - m*11

for all mE M. We consider continuity with respect to the Hausdorff metric

h(U, V) = max {sup inf Ilu - vii, sup inf Ilu - vii}, (1.1)
UEU VEV VEV UEU

where U and V are closed, nonempty subsets of C(X). The metric projection
PM is said to be (Hausdorff) continuous atfE C(X) if for every I: > 0 there is
a 0 > 0 such that

(1.2)

for all gE C(X) with Ilf - gil < o. We say that PM is point Lipschitz
continuous (or point Lipschitzian ) at f there is a constant A= A(f) > 0 such
that

(1.3)

for all g E C(X).
The following theorem gives known relationships between these concepts.

The first statement is probably folklore and the second is essentially due to
Cheney [2, p. 82].

THEOREM 1. (a) If fE C(X) has a unique best approximation from M,
then PM is continuous at f (b) Iff has a strongly unique best approximation
from M, then PM is point Lipschitz continuous atf

In this paper we enquire as to whether the converses of the statements in
Theorem I are valid. In Section 2, Theorem 2, we show that iff has a unique
best approximation from M and PM is point Lipschitzian at J, then f has a
strongly unique best approximation. To obtain precise converses, we require
an additional condition on M. We say that M is a Chebyshev subspace of
C(X) if every function in C(X) has a unique best approximation from M and
that M is an almost Chebyshev subspace of C(X) if except for a set of first
category in C(X) every function has a unique best approximation from M
(see Garkavi [3,4]). In Theorem 3, we show that if M is almost Chebyshev,
then the functions in C(X) at which PM is continuous are precisely those that
have unique best approximations and the functions at which PM is point
Lipschitz continuous are precisely those that have strongly unique best
approximations.

In Section 3, Theorem 4, we show that in fact the converse of either
statement in Theorem I constitutes a complete characterization of finite
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dimensional almost Chebyshev subspaces of C(X). The "point Lipschitz
continuity implies strong uniqueness" characterization of almost Chebyshev
subspaces has an interesting counterpart for Chebyshev subspaces.
McLaughlin and Somers [6] have shown that "uniqueness implies strong
uniqueness" completely characterizes Chebyshev subspaces of C(X).

The results of this paper are surprising when one considers the same
questions in Hilbert spaces or in the L p spaces with 2 <p < 00. It is well
known that metric projections onto closed subspaces of a Hilbert space
satisfy Lipschitz conditions, and Holmes and Kripke [5] have shown that
metric projections onto finite dimensional subspaces of L p (2 <P < (0) are
pointwise Lipschitzian. However, these spaces are smooth, and Wulbert [101
has shown that no nontrivial subspace of a smooth space admits strongly
unique best approximations to points not in the subspace. Thus Theorem 2
fails in both spaces. In both cases, finite dimensional subspaces are
Chebyshev subspaces and hence the characterization of almost Chebyshev
subspaces in Section 3 does not extend to these spaces.

The Hausdorff metric (l.l) is used in (1.3) to obtain greater generality
than other authors in the definition of point Lipschitz continuity of a set
valued metric projection. Specifically, Nurnberger [7] defines PM to be point
Lipschitzian at f iff has a unique best approximation mf from M and there is
a constant A= A(f) > 0 such that II mf - mgll ~ A Ilf - gil for all g E C(X)
and mg E PM(g). If f has a unique best approximation from M, then (1.3)
and Nurnberger's definition coincide. Theorem 2 then asserts that point
Lipschitz continuity of P'J atfin the sense of Nurnberger implies thatfhas a
strongly unique best approximation. No generality is lost in using- the
Hausdorff metric in (1.2) since the concepts of continuity, Hausdorff
continuity, and Kuratowski continuity coincide when M is finite dimensional
(see Singer [8 D.

2. POINT LIPSCHITZ CONTINUITY AND STRONG UNIQUENESS

In this section, we establish converses of the statements in Theorem I. We
first introduce some notations and cite the main theorems that will be used.

Let {m p ..• , mnl be a basis for M, and for x E X, let x=

(ml(x), ...,mn(x))ER n and 8= (0,...,0) ERn. For AC;;R n, coA, intcoA,
and bdy co A shall denote the convex hull, the interior of the convex hull,
and the boundary of the convex hull of A, respectively. For fE C(X), the
extreme set off is defined to be

E(f) = {x E X: If(x)1 = Ilflll.
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It is well known that m* EM is a best approximation tofE C(X) from M if
and only if

oE co{(f - m*)(x) x: x E E(f- m*)}.

(See Cheney [2, p. 73 ].) Our main tool is a similar characterization of strong
uniqueness due to Bartelt and MacLaughlin [1]. That is, m* EM is a
strongly unique best approximation to f from M if and only if

oE int co{(f - m*)(x) x}: x E E(f - m*)}.

THEOREM 2. Let f E C(X). Iff has a unique best approximation from M
and PM is point Lipschitz continuous at f, then the best approximation to f is
strongly unique.

Proof Without loss of generality, we suppose that 0 is the unique best
approximation to f and that Ilfll = 1. We assume that 0 is not a strongly
unique best approximation to f and show that PM cannot be point
Lipschitzian at f By the theorems cited above, we have that

oE co {f(x) x: x E E(I)} n bdy co{f(x) x: x E E(f)}. (2.1)

By a corollary to the supporting hyperplane theorem (see Stoer and Witzgall
[9, p. 103 J), there is a nonzero linear functional L on R n

, say

n

L(~I ,..., ~n) = L aj~j'
j=1

such that

L(O) = 0 ~ L(f(x) x)

for all x E E(f). Define the function m E M by

n

m(x) = L ajm/x).
j=1

It follows from (2.2) that

(2.2)

(2.3)

f(x) m(x) ~ 0 for x E E(I). (2.4)

Now by (2.1), there is a finite set of points z I'"'' Z k in E(f) such that

eE co{f(zJ Zi: i = 1,..., k},

640/40(3-2

(2.5)
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and (2.4) and (2.5) imply that

m(z;) = ° (i = 1,..., k). (2.6)

For £5 > 0, we construct a function g", E C(X) and a number A = A(£5) >°
such that -Am E PM(g",), Ilf- g",11 = £5, and lim",-+o+ A(£5)/£5 = +00.

Let Z = {x E E(I): m(x) = a}, z+ = {x E z:f(X) = 1}, and Z- =
{xEZ:f(x)=-I}. Evidently, Z=Z+UZ- and each of these sets is
closed in X. Since X is normal, there is a closed neighborhood j//'+ of Z+
such that f(x) > ! for x E /+ and there is a closed neighborhood /- of
Z- such that f(x) < -! for x E j//~-. Let A~ = int /+ U inL1,'~-. Then A/'
is an open neighborhood of Z. We require

LEMMA 1. For every £5 > 0, there is a number A = A(£5) > 0 such
that sgnf(x)(f(x)+Am(x))~I+£5 for xEA/~, Iim",-->oTA(O)=O, and
lim "'-+0 + A(£5)/£5 = +00.

Proof of Lemma 1. We first show that for each £5 > 0, we may select
A+(£5) >° such that sgnf(x)(f(x) +am(x)) ~ 1 + £5 for x E A"+ and
0< a:::;; A+(0), Iim",-+o+ A+(0) = 0, and Iim",-->o+ A+(£5)/0 = +00.

Let T= {xE/+:m(x)~O} and S=.;fI+\T. If S=0, then m(x)~O

for all x E /+. In this case, let A+(£5) = 0', and sgnf(x)(f(x) +am(x)) =
f(x) +am(x) ~ 1 for x E /+ and 0< a:::;; A+(0). The other two conditions
are clear. Suppose S *' 0. Let

A+(£5) = inf 0 + I-f(t).
tES m(t)

(2.7)

We first verify that the infimum in (2.7) is attained. Since S *' 0,
A+(£5) < 00. Select a sequence {t j } in S such that

Since X is compact, we may assume that t; --t x", EX. Since /+ is closed,
x", E A/"+. If x", E T, then m(x",) ~ 0 and the continuity of m would imply
that m(x",) = O. Thus m(tj ) --t 0 and hence
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(2.8)

which contradicts the fact that A+(<5) < 00. Thus Xh E S, m(xh) >0, and the
continuity ofI and m imply that

A. +(6) = <5 + I - I(xh ) •

m(xh )

Moreover, it now follows from (2.8) that A+(6) > O.
We next show that limh-+o+A+(<5)/6 = +00. It suffices to show that for

every sequence {6j } of positive numbers with <5r -t 0 there is a subsequence
{6j J such that A+(<5j )/<5jv --+ +00. In the remainder of this paragraph we
suppress the subscripts on the symbol <5. Suppose J --+ O. We extract a subse
quence so that x h --+ x E f+. Either x E T or xES. If x E T, then as above
m(x) = 0, m(xh ) --+ 0, and

If xES, then m(x) > O. If I(x) = I, then x E E(f) and I(x) m(x) > 0
contrary to (2.4). Thus I(x) < I and

Hence, limh-+o+A+(<5)/<5 = +00.
Now by (2.7) and the argument above (2.7), sgn/(x)(f(x) +am(x));;;

I +J for x E f+ and 0 <a ~ A+(<5). Finally, if lim SUPh-+O+ A+(<5) > 0, we
may replace A+(<5) by mine/0, A+(<5)) and the result holds.

Replacing I and m by -land -m in the argument above, we see that for
<5 >0, there is a number A-(<5) >0 such that sgn/(x)(f(x) +am(x)) ~ I +6
for xEf- and O<a~A-(<5), limh-+o+A-(<5)=O, and limh-+o+A-(<5)/<5=
+00. The lemma is proven by letting A(<5) = min(A +(<5), A-(<5)).

Returning to the proof of Theorem 2, we now construct the function gh'

Since Zi E Z (i = I,... , k) and f is an open neighborhood of Z, (2.6) implies
that there is an open neighborhood Gh of {z 1 , ... , Z k} such that

AIm(x)1 < <5/2 (2.9)

and

Gh ~Jf/.

Now define a real-valued function ((Jh on {Zl'oo.,zk!U(X\G h) by

(2.10)

(i = I,..., k) (2.11 )
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for xEX\G 8 • (2.12)

Observe that ({J8 is continuous and satisfies the inequality

(2.13 )

on the closed set {z 1'... , zd U (X\ G8 ). A mild variation of the Tietze
extension theorem allows us to extend ({J8 continuously to all of X so that
(2.13) holds for all x E X. Finally, we define g8 E C(X) by

(2.14)

We show that Ilf- g811 = <5. For x E X\G 8 , (2.12) and (2.14) imply that
g8(X) =f(x). For x E G8, (2.9), (2.13), and (2.14) yield

If(x) - gix)1 ~ I({J8(x)1 ~ 1<5 - A Im(x)11 ~ <5.

Now fez 1) - g8(Z 1) = - fez 1) ({J 8(Z 1) = ±<5 by (2.11) and hence II f - g811 = <5.
Next we verify that -Am E PM(g8) for <5 sufficiently small where A is given

by Lemma 1. The set E(f) \JY" is closed, and (2.4) and the fact that Z c:;;;. /

imply that f(x) m(x) <0 for x E E(!) \/. Thus there is an open
neighborhood Y of E(f)\/ such that If(x)1 > ~ and f(x) m(x) <0 for
x E Y. Since / U Y is open and covers E(f),

fl. := sup If(x)1 < 1.
XEX\<.YUff)

By Lemma 1, lim8~0+ A= 0, and so there is a <50 > 0 such that
AIlmil < min(1j2, 1 - fl.) for 0 < <5 ~ <50, Suppose 0 < <5 ~ <50, We first show
that II g8 +Amll = 1 + <5. For x E X\(/UY), (2.12) yields

I gix) +Am(x)1 = If(x) +Am(x)1 ~ If(x)1 +A Im(x)1

For x EY\/, AIm(x)1 < ~ < If(x)I,f(x)m(x) <0, and (2.12) imply that

Ig8(X) +Am(x)1 = If(x) +Am(x)1 = If(x)l- A Im(x)1 ~ 1.

For x E/\G8 , A Im(x)1 <1< If(x)/, (2.12), and Lemma 1 ensure that

Ig8(X) +Am(x)1 = If(x) +Am(x)1 = sgnf(x)(f(x) +Am(x)) ~ 1 + <5.

For x E G8 , (2.9) and (2.13) yield
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Ig~(X) + Am(x)1 ~ If(x)1 + IqJ~(x)1 + A Im(x)1

~ If(x)1 + b - A Im(x)1 + AIm(x)1 ~ 1 + b.

209

Finally, for i = 1,..., k, (2.6) and (2.11) imply that

g~(Zi) + Am(zi) = (1 + b)f(zJ = ±(1 + b).

Thus Ilg~+Amll= 1 +15 and {zl, ...,zd<;;E(g~+Am). By (2.5),

eE co{(1 + b)f(zi) Zi: i = 1,...,k} <;; co{(g~ + Am)(x) x: x E E(g~ + Am)}.

By the theorem on p. 73 in Cheney [2], -Am E PM(g~).

Since PM(f) = {Of,

h(PM(f), PM(g~» II-Am - 011 AIlmil
Ilf-g~I' ~ 15 =-b--t+oo

as 15 -t 0 by Lemm 1. Thus PM is not point Lipschitzian at f The proof of
Theorem 2 is now complete.

We now turn to the case in which M is an almost Chebyshev subspace of
C(X). The importance of this condition is that if M is almost Chebyshev,
then the set of functions that have unique best approximations from M is
dense in C(X). It is of interest to note that Garkavi [3] has shown that in
C(X) (in fact, in all separable spaces) the almost Chebyshev property for
reflexive subspaces is equivalent to the set of functions having unique best
approximations being dense in C(X).

THEOREM 3. Let M be an almost Chebyshev subspace ofC(X). (a) If PM
is (HausdorfJ) continuous at fE C(X), then f has a unique best approx
imation from M. (b) If PM is point Lipschitz continuous at f E C(X), then f
has a strongly unique best approximation from M.

Proof We need only prove (a) for (b) follows from (a) and Theorem 2.
Suppose f does not have a unique best approximation from M. Select distinct
u, v E PM(f). Since M is almost Chebyshev, there is a sequence {gd in C(X)
such hat Ilf - gkll-t 0 and PM(gk) = {md. That is, each gk has a unique best
approximation from M. Then

O<! Ilu - vii ~ !{lIu - mkll + Ilmk - vii}

~max{lIu-mkll,llv-mkll}~ sup Ilw-mkll
WEP'l1(f)
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3. A CHARACTERIZATION OF ALMOST CHEBYSHEV SUBSPACES OF C(X)

The aim of this section is to investigate the role of the almost Chebyshev
condition on M in Theorem 3. We shall see that properties (a) and (b) in
Theorem 3 completely characterize finite dimensional almost Chebyshev
subspaces of C(X).

Our main tool in this section is a Haar-like characterization of almost
Chebyshev subspaces of C(X) due to Garkavi [4]. If G s; X, let

Nn(G) = card(G),

=n,

if card(G) ~ n,

otherwise.

Garkavi showed that an n-dimensional subspace M of C(X) is almost
Chebyshev if and only if for every open subset G of X, at most n - Nn(G)
linearly independent functions in M vanish identically on G. If X has no
isolated points, this condition reduces to the property that no nonzero
element of M can vanish identically on a nonempty open subset of X.

We also require the following lemma which asserts that local point
Lipschitz continuity is equivalent to global point Lipschitz continuity for
metric projections.

LEMMA 2. The metric projection PM is point Lipschitz continuous at
IE C(X) if and only if there exist constants A>0 and e > 0 such that
h(PM(f), PM(g)) ~ AIII- gil lor all g E C(X) with III- gil ~ c.

Proof The "only if' part is clear. Suppose such constants A and e exist.
Let g E C(X) with III- gil> c. Let u E PM(f) and v E PM(g). If
III- gil ~ 11111, then

Ilu - vii ~ 2(11/11 + II gil) ~ 2(211/11 + III- gil) ~ 6.
Ilf - gil Ilf- gil Ilf - gil

If Ilf- gil < IIJII, then

tlu - vII 1 2
Ilf-gil ~-ellu-vll~-e(1I/II+llgli)

2
~ - (211fll + IIf- gil) ~ 61Ifll/e.

e

Hence; h(PM(f)'PM(g))~max(6,611/11/e)ll/-gll, and thus PM is point
Lipschitzian atfwith Lipschitz constant max(A, 6, 61Ifll/e).
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THEOREM 4. Let M be a finite dimensional subspace of C(X). The
following are equivalent:

(1) M is almost Chebyshev.

(2) If PM is continuous at J, then f has a unique best approximation
fromM.

(3) If PM is point Lipschitzian at J, then f has a strongly unique best
approximation from M.

Proof Theorems 3 and 2 yield (1) implies (2) and (2) implies (3),
respectively. We prove (3) implies (1).

We suppose that M is not almost Chebyshev and show that (3) fails. The
initial reductions in this proof are identical to the first steps in the proof of
necessity in Theorem 1 in Garkavi [4, pp. 181-183 j, and we refer the reader
to his paper for the details. Let {m I'"'' mn} be a basis for M. If M is not
almost Chebyshev, then the Haar-like condition cited above fails. Garkavi's
reduction then yields one of the following

(A) On some open subset G of X containing at least 1+ 1 points, the
number of linearly independent functions in {m I'"'' mn } over G is I, where°< I < n. These functions remain linearly independent over any open subset
G' of G containing at least I points.

(B) On some nonempty open subset G of X, all the functions
m l , ... , mn vanish identicaly on G.

We consider case (A). Without loss of generality, m I'"'' m, are the
functions which are linearly independent over G. For i > I, we have that m i is
linearly dependent on m l , ... , mn over G, and thus there exist constants
a l , ... , a, such that m; = m i - L)=l ajmj vanishes identically on G. We also
have that {ml' ... ,m"m/+I,...,m~} is a basis for M. Again, as Garkavi has
shown, there exist I + 1 points X o,... , x, in G such that the determinant

ml(xo) m/(xo)

Dk =
m1(xk_ l) m,(xk~ I)

(3.1 )
ml(xk+I) m/(xk+I)

ml(xJ mlx/)

is nonzero for k = 0, , I.
Let M 1 =sp{ml' ,mL! and M2=sp{m/+I' ...,m~}. Then M=M 1 (f)M2.

Let B 2 = {m E M 2 : II m II ~ I} be the unit ball in M 2 • By the selection of
m/+ 1 , ... , m~, we see that

mIG=O for m EM2 • (3.2)
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The rest of the proof relies heavily on

LEMMA 3. There exist signs a0"'" a I E {-I, I} and a positive constant K
such that if m E M I' 0 > 0, and

(i = 0,..., i),

then II m II ~ Ko.
Proof of Lemma 3. We select the signs a; as follows. Since each of the

determinants in (3.1) are nonzero, given any i points YI""'YI in the set
{xo'···' Xl} and any i real numbers rl''''' rl there is a unique mE MI' such
that m(y;) = r; (i = 1,..., i). For i = 1,..., i, let L; be the unique element of M 1

satisfying

L;(xj ) = 1,

=0,

if j = i,

if j= 1,..., i,j=/=- i.

Then L;(xo) =/=- 0 for otherwise L; would have i zeros in {xo,"" XI} and would
therefore be identically zero. Let a; = sgn L;(xo) (i = 1,..., i) and a o= -1. It
now suffices to show that

sup{llmll: m E MI' a;m(x;) ~ 1 (i = 0,... , i)} < 00.

Suppose that {Pv} is a sequence in M 1 such that a; p,,(x;) ~ 1 (i = 0,... , i) and
IIPvll--+ 00. By the interpolating property above, max1<;;<;llm(x;)! is a norm
on M 1 and hence is equivalent to the uniform norm on MI' Thus

Extracting a subsequence if necessary, we may assume that akPv(xk)--+-oo
for some fixed index k E {I,... , I}. For fixed i E {I,..., l} if a; PV<x;) ~ 0, then
a; Pv(x;) ~ 1 and

If a; Pv(x;) < 0, then

Thus

I

PV<xo) ~Pv(X~)Lk(XO) + L IL;(xo)I--+-oo
;=1
;*k
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as v ---> CO. This contradicts the fact that rJ0 h(xo) <, 1 and Lemma 3 is now
proven.

Returning to the proof of Theorem 4, we selectfE C(X) satisfying

f(x;) = rJ,. (i = 0,... , I), (3.3)

f(x) = 0 for xEX\G, (3.4 )

and

If(x)1 ~ 1 for xEX. (3.5)

We show that PM is point Lipschitzian at f but f does not have a strongly
unique best approximation from M.

It is easy to see that PM/f) = B 2 and that dist(j, M 2) = 1. We show that
PM(f)=B 2 • Let u+vEM where uEMI' vEM2 , and Ilf-(u+v)ll=
dist(j, M) ~ 1. For i = 0,... , I,

1 - rJ,.u(x,.) = rJ,.(f(xi) - u(x,.)

= rJ,.(f(xi) - (u(xi) + v(X,.))) ~ 1.

Thus rJi(-u(x,.) <, 0 (i = 0,... , I). By Lemma 3, u == O. Thus Ilf - vii ~ 1 and
so v E PM2(f) = B 2 • Hence, dist(J, M) = 1 and P",Af) = B 2 • Since 1< n, B 2

is nonsingleton andf does not have a unique best approximation from M. So
f does not have a strongly unique best approximation from M.

We now show that PM satisfies a point Lipschitz condition at f Let
g E C(X) and u + v E PM(g) where u E'M, and v E M 2 • For i = 0,... , I,

rJi(g(Xi) - u(xi»= rJi(g(Xi) - (u(xi) + v(X,.)))

<, dist( g, M).

But rJ,.j(xi) = 1= dist(j, M) and subtracting yields

rJi(-u(X,.) ~ rJi(f(x,.) - g(xi»+ dist(g, M) - dist(j, M) ~ 211f - gil.

By Lemma 3,

II u II <, 2K II f - gil·

Now using 1dist(g, M) - dist(j, M)I ~ II f - gil again, we have

/I g - (u + v)II = dist(g, M) ~ 1 + Ilf- gil·

So by (3.6),

II g - vii ~ II g - (u + v)11 + Ilull ~ 1 + (2K + 1) Ilf - gil·

(3.6)
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Using (3.2) and (3.4)

II v II = max Iv(x)1
X\G

~ max If(x) - g(x)1 + max Ig(x) - v(x)1
X\G X\G

~ 1 + (2K + 2) Ilf-gil.

Thus

dist(v, B 2) ~ (2K + 2) Ilf - gil,

and by (3.6) and (3.7), we have

(3.7)

sup inf II w - mil ~ (4K + 2) Ilf - gil. (3.8)
WEPM(g) mEPM(f)

Now suppose IIf - gil ~ 1/(4K + 4) and fix u + v E PM(g) where u E M 1

and v E M 2 • We show that u + am E PM(g) for any mE B 2 and
lal ~ 1 - (2K + 2) Ilf- gil. Note that dist(g, M) >1 -Ilf- gil. Then

s~p Ig(x) - (u(x) + am(x»1 = sw Ig(x) - u(x)1

= sup Ig(x) - (u(x) + v(x»! ~ dist(g, M)
G

and using (3.4) and (3.6)

max Ig(x) - (u(x) + am(x»1 ~ max 1(I(x) - g(x)1 + max Iu(x)1 + a
X\G X\G X\G

~ Ilf - gil + 2K Ilf- gil + 1 - (2K + 2) IIf- gil

= 1 -Ilf- gil ~ dist(g, M).

The assertion is now established. Now for m E PM(I) = B 2' U + am E PM( g)
where a = 1 - (2K + 2) Ilf- gil and using (3.6) again

II(u + am) - mil ~ Ilull + 1 - a

~ 2K Ilf- gil + 1 - 1 + (2K + 2) Ilf - gil

= (4K + 2) Ilf - gil·

Thus

sup inf Ilw-mll~(4K+2)llf-gll·
mEPM(f) WEPM(g)

for Ilf- gil ~ 1/(4K + 4). Thus PM satisfies a local point Lipschitz condition
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at f and by Lemma 2, Pw satisfies a global point Lipschitz condition at f
The proof for case (A) is now complete.

In case (B) we select XoE G and define fE C(X) so that f(xo) = I,
f(x)=O for xEX\G, and If(x)l~ 1 for xEX. It is easy to see that
Pw(f) = B, where B is the unit ball of M. If g E C(X) and Ilf - gil ~ 1, it
can easily be shown that {mEM:llmll~I-21If-glllC;:PM(g)c;:

{mEM:llmll~1 +21If-glll and hence h(PM(f),PM(g))~21If-gll. The
result follows by Lemma 2. The proof of Theorem 4 is now complete.
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